

eXtensible Concatenative Language Engine

XCLE: Programmatic handling of executable code, combining easy generation and manipulation with
execution speed and memory efficiency at runtime.

Tutorials

1. Basic structure of XCLE objects and programs
2. Using the XCLE API to manipulate and evaluate structures
3. Extending XCLE: primitives, modules, custom types

XCLE - Basic structure of XCLE objects and programs.

Introduction

XCLE was originally started as OKit, a basic object manipulation toolkit for use in Genetic Programming
projects, that soon evolved toward a full-fledged language and compiler.

While most of the code and object-handling algorithms have been changed with respect to the OKit
libraries, the goal remains essentially the same: to provide a two-level executable code manipulation
system, by building the code programmatically, or by compiling human-readable and -writable sources.

Anything that XCLE can manipulate is an object, with a complete set of methods to create, edit and
delete internal data. And most of these can also be specified inline, in a character stream, and parsed to
produce binary object. This second method relies on "Primitives Libraries", or definitions of a set of
low-level instructions, called thereon "primitives". These primitives associate a name with informations
related to execution (think "C-prototype") and machine-code that realize the actual operation.

We will attempt in this tutorial to show how these objects interact, how they are produced and used,
from a language-user (as opposed to developer) perspective.

Syntax of XCLE programs

Types

XCLE knows how to handle a few predefined types: integers, floats, strings, lists, and primitives. These
are objects, sharing a common "generic" ancestor. Integers are 32bit signed integers, floats are double
precision floating-point numbers, lists are arbitrarily long vectors of generic objects, and primitives are
the base of the ’executable’ feature of these programs. All these objects are memory-managed, which
means that, except when programming new primitives, very little is to be done to ensure proper memory
allocation and waste-collection.

XCLE Class Diagram

Most, if not all, data types can be implemented in terms of combinations of these structures. And objects
imported from C can be integrated in XCLE using a numeric pointer value as an integer object in XCLE.
If having a dedicated type for a given data structure is an issue (e.g. to ensure that the data type is
accessed only by the proper handlers), this can be obtained using a dedicated primitive, in a procedure
more extensively detailed in a further document (see the Extending XCLE tutorial).

Syntax

Syntaxically, XCLE programs are blank-separated successions of strings, lists, primitives and barewords
(i.e. blocks of alphanumeric characters without delimiters).

Integers are all-numeric barewords (containing only the characters 0123456789+-).

Floats are barewords containing numeric characters, or the characters ’.’, the floationg point marker, and
’e’ or ’E’, the exponent marker.

Strings are double-quote delimited successions of characters, allowing for escaped special characters
(\a,\f,\r,\n,\t,\") and octal escapes (of the form \xxx).

Lists are simply an XCLE-parsable succession of characters, leading to a valid list of objects, encased in
square brackets (’[’ and ’]’).

Primitives take the form ’<name>’, or ’<name:data>’, where ’name’ is a group of characters without
whitespace nor XCLE delimiters (i.e. <>[]:"), and ’data’ is a --single-- valid object. In this form, they need
not be defined, that is, have defined prototype and machine-code properties.

Unaccounted-for barewords (those that are not integers or floats) are first parsed as primitives (like
<bareword>, but only if this exists as a defined primitive), and failing that as strings.

An example

Here is an instance of a syntaxically valid XCLE program, in its string representation:
["three: " .4e+1 -1 <+> <dupN:2> <tostr> <strcat>]

Executing XCLE programs

Execution Model

XCLE makes no distinction between executable code and data. Programs are lists, containing objects of
the predefined types. Upon execution of such a list/program, each object in turn is deposited on a stack,
except for primitives.

Primitives are checked against the current state of the stack (as defined by the objects presents before
execution, and those deposited during it). If the test fails, an exception is raised. Otherwise, the
machine-code section of the primitive gets executed, and the remaining part of the list is examined.

This step-by-step processing, reminding of the RPL syntax (operators are cited after their arguments),
will be called hereafter the "execution stream". At each step, the contents of the stack are critical to the
execution of the remains of the stream, both in the necessary sense (i.e. the arguments needed to
successfully complete the execution) and the sufficent sense (i.e., the end of the execution stream
behaves only according to the arguments supplied, whatever the means -- the first part of the program,
or objets put on the stack by hand).

A concrete example

Assuming primitives called ’+’, ’dupN’, ’tostr’ and ’strcat’ have been defined, and behave like their name
would lead us to expect (respectiveley, numeric addition, replicating a given number of arguments on
the stack, stringification and string concatenation) the above program would thus be executed in the
following way:

- the string "three: " is pushed on the stack
- the float 4.0e+00 is pushed on the stack
- the integer -1 is pushed on the stack
- the ’+’ primitive is executed, taking 4.0e+00 and -1 from the stack and leaving the float 3.0e+00
- the ’dupN’ primitive is executed, with parameter 2, replicating the two first levels of the stack
- the ’tostr’ primitive is executed, the first stack level 3.0e+00 becoming the string "3.0e+00"
- the ’strcat’ primitive is executed, making "three: 3.0e+00" out of "three: " and "3.0e+00"
- the execution terminates successfully

Parsing and execution contexts

Primitives definitions

XCLE by itself defines no primitive. The syntax allows you to define named primitives using the <name>
construct, created, by default, empty. Only already defined primitives will have actual content, meaning
their execution will result in anything else than keeping the stack unchanged.

As we see, defining primitives is thus necessary for XCLE programs to do anything useful. This can be
done in two ways. The first gives you complete control on the primitives definitions, using API calls to
build a primitive template, and register it with the parsing tools. This process is described in depth in the
second tutorial, Using the XCLE API.

However, the easiest method is to load a predefined module (that is, a file containing binary definitions
of several primitives). This can be done via API calls, or by using command-line options with the XCLE
compiler cxcl,

A standard primitives module for XCLE, XCLstd, defines a wide set of basic operations on predefined
objects, like stack operations, string and list toolkits, standard mathematic functions.

If a particular set of operations is needed, or the standard set is too large, custom modules can be
defined. This process is explained in the Extending XCLE part of this tutorial.

Practical use of modules

Let us assume we have defined the ’+’, ’dupN’, ’tostr’ and ’strcat’ primitives we needed for our above
examples, in a module named "MyTest". The effective file name will more probably be "MyTest.so" (or
"MyTest.dll" on Windows), since the modules are actually shared libraries. We will assume this file is in
the current working directory, or in the library search path. We will use cxcl to execute our program,
through the command line:

cxcl -L -l "MyTest.so" ’["three: " .4e+1 -1 <+> <dupN:2> <tostr> <strcat>]’

The -L switch tells cxcl not to load the default module, XCLstd. We then specify the module we want
loaded, with the -l switch. The first non-switch argument is our program, that will be parsed using the
module’s definitions, then executed.

The output shows the execution status of the program and the resulting stack contents:

Evaluated ["three: " 4.0e+00 -1 <+> <dupN:2> <tostr> <strcat>] ; OK

.= STACK ==.
| 00008 : |
| 00007 : |
| 00006 : |
| 00005 : |
| 00004 : |
| 00003 : "three: " |
| 00002 : 3.0e+00 |
| 00001 : "three: 3.0e+00" |
==

XCLE - Using the XCLE API to manipulate and evaluate structures.

Structure of the API

Use of DbgLog

DbgLog filters and logs debugging/error messages according to errno, calling module/function, warning
keyword and debugging level. Particular errno/keyword combinations can be made fatal. Output log files
depend on keyword.

Error tracking

To use DbgLog , simply #include <DbgLog.h>.

Error reporting can be done using:
void DbgLog(const char * mod, const char * key, unsigned char lev, const char * mes, ...) ;

’mod’ is the calling module or function name. This is the main context data, as this information will structure
the actual hierarchy of calls. ’key’ is a debugging key, an identifier tag that will direct logging and filtering of
this message. ’lev’ is a numeric indication of severity (the lower, the more severe, with 0 having sense as
"system-level error").

For instance:
DbgLog("MyFunction","dummyerror",16,"This is my error number %d",num++) ;

Reporting levels

DbgLog_UpDbgLvl and DbgLog_DnDbgLvl respectively toggle on and off displaying messages from the
error levels given by the set bits of the mask (1 being the level 0, 1<<1 the level 1, and then on until 1<<31).

Error stack and recursive calls

DbgLog_OpenBlock and DbgLog_CloseBlock are used to open and close trapping blocks, that is to
suspend error reporting. No messages will be printed, except when DbgLog_Flush is called, that will print
all trapped error entries from the last call to DbgLog_OpenBlock.

Managing imbricated failures

When using imbricated calls to functions using DbgLog, the uppermost can fail because one lower call
failed. In this case, using DbgLog again would result in two messages for the same material error.. While
this may be desirable, most often this would only be confusing at debug time. It is advisable to limit the use
of DbgLog on generation of error, that is: a failed system call (so the errno variable is set to a meaningfull
value), a check that showed some discrepancy in data, wrong arguments...

Support features

Two complex structures are used to store objects during execution. These are the XCLE_Stack and
XCLE_Hash objects, defined in <XCLE/Containers.h>.

XCLE/Containers.h definitions

Stack

The XCLE_Stack object holds arguments and results while executing programs. It can be manipulated by
poping and pushing data (with XCLE_StackPop and XCLE_StackPush respectiveley) on the lowermost
stack level, thus lowering/raising other objects already on the stack. An object on a given level can be
accessed through XCLE_StackGet, that returns the object without removing it from the stack.

Hash

The XCLE_Hash object can be used as a variables table. It holds (name,object) pairs, giving access to the
objects by their name in an efficient way. XCLE_HashSet, XCLE_HashGet and XCLE_HashDel provide
ways to manipulate this association, by respectively creating/modifing an entry, retriving the contents of an
entry, or deleting an entry.

Creating objects

XCLE defines several language objects types, that is, object that will be accessible as types inside the
XCLE programming language. These are XCLE_Void, used as an undefined value, XCLE_Intg and
XCLE_Fltp, providing the integer and floating point numeric types, XCLE_Strg that holds character string or
binary data, XCLE_List which serves both as a collection structure, and a program structure, and
XCLE_Code that provides the language’s basic instructions, or primitives. These types inherit from a
generic object type XCLE_Object, which stands for any language-level object.

No data is directly accessible inside these objects. Instead, constructors and accessors are provided, that
check data integrity and help making memory management transparent. Object creation can happen in two
ways: the use of an explicit constructor, of the form XCLE_<type>New(data), or the parsing of a valid string
representation, through the XCLE_ObjectParse and XCLE_ListParse methods defined in the
<Mod_parse.h> header file.

Language types definitions

The XCLE_<type>New(data) methods

For a few objects, the XCLE_<type>New(data) methods do not exist, and are replaced by
XCLE_<type>Alloc() methods that take no argument.

The XCLE_VoidAlloc method creates a new XCLE_Void object. It takes no argument.

The XCLE_IntgNew method creates a new XCLE_Intg object. It takes a single argument, the integer
number whose value will take the newly created object.

The XCLE_FltpNew method creates a new XCLE_Fltp object. It takes a single argument, the floating point
number that will serve to initialize the object.

The XCLE_StrgNew method creates a new XCLE_Strg object. It takes a single argument, a C-style
character string (i.e. a nul-char-terminated character array) copied into the new object.

The XCLE_ListAlloc method creates a new XCLE_List object. It takes no argument, and returns an empty
list.

The XCLE_CodeAlloc should probably be used only by primitives library developers. It is useless per se,
as the returned XCLE_Code object is devoid of any information such as primitive name, or handler.
Executing a program containing this object will result in a runtime error. XCLE_Code objects should be
created using the appropriate methods from the <XCLE/Mod_Parse.h> module, as detailed in the Parsing
process section.

String parsing

Provided a parsing context has been defined, containing primitives definitions and parsing parameters, the
most simple way of creating objects is probably to parse them from their string representation, using
methods such as XCLE_ObjectParse and XCLE_ListParse, whose use will be detailed in the Parsing
section.

In the same context, the XCLE_ParseCtx_CodeByName method can be used instead of
XCLE_CodeAlloc to obtain valid XCLE_Code objects. It asks for a defined parsing context, and a string
that should be the name of a primitive registered in the parsing context. A fully functionnal
XCLE_CodeAlloc object will be returned.

Reference counting and memory

The memory management system of XCLE reposes on references count. Each object has its own, that
reflect the number of "ownership tokens" that were distributed for this object. Each module or code structure
that makes use of an object and is susceptible to share it with other structures must have one such token on
the object.

Increasing the reference count of an object means acquiring such a token, while relinquising this token bars
this code section from any right to use this object anymore.

An object can be definitively freed only if its reference count is zero, that is, if no part of the program is using
this object anymore.

Be wary of implicit (de-)referencing of objects included in compounds (lists elements, and code data
segment). It will happen when the references on parent objects are modified, because ownership of the
parent means also ownership of its components.

Creation

As we saw above, most types have their XCLE_<Type>Alloc constructors, or alternately
XCLE_<Type>New. However, calling these constructors isn’t enough to reference the new object, i.e.
informing XCLE this object is in use. That, in turn, should be done using the XCLE_ObjectUpRef and
XCLE_ObjectDnRef methods.

Referencing a new object (through XCLE_ObjectUpRef) is useless if its visibility will be restricted to the
current block. It is recommanded whenever the object will persist after the end of the block. It is mandatory
when the object will be duplicated, in part or whole (thing of the atoms in a list), in a container structure like
XCLE_Stack or XCLE_Hash.

Destruction

The same holds for dereferencing an object (through XCLE_ObjectDnRef) that has not been created in this

block, and has become useless. As well, this is mandatory for objects deleted from a container structure.

Methods and calls from the XCLE library are a special case: as integral to the memory management
system, they always return objects in the same reference state as they were given (or unreferenced for new
objects), unless specified otherwise.

When an object is not used anymore in the block, XCLE_ObjectFree (or a type-specific method) must be
called on it. If the object is not owned at this time, it will be effectively freed.

Role of support structures

(De-)referencing is mandatory for operations on containers structures, but most operations on containers
will take care for you of referencing inserted objects, and dereferencing objects deleted. Containers
structures are not objects per-se, and thus have no reference counts of their own.

Freeing these structures will dereference (once only) and free their objects. Take special care when using
methods that return an object from a container without deleting it. If you then free the container, or simply
empty it, this object will have been dereferenced. If it is not used anywere else, this object will then have
reached a zero reference count, and have been freed.

Parsing context

Parsing process

Defining primitive templates through Code_Def

Registering primitives sets

Execution context

Execution procedure

What are exceptions?

Raised exception stack

Common pitfalls

XCLE - Extending XCLE: primitives, modules, custom types.

Section

This tutorial focuses on ways to making XCLE handle more complex language constructs than the basic
mecanism of scalars, lists and primitives. To fully understand the concepts we are contending with, you
will need to be very familiar with the language structure, and XCL programmation. You will also need to
have a good understanding of the reference counting mecanism, and at least a basic knowledge of the
layout of the API.

Language extensions

The first way to extend XCLE is to provide new primitives. Actually, XCLE would not be very usefull
without these "extensions". The default set of primitives, XCLstd, provides most of the basic ways data
can be altered in XCLE, whether it is stored in a scalar or list type.
However, tailored use of the language often relies on ad-hoc handlers, references to external libraries,
or optimized, computationally intensive algorithms. These can be integrated into XCLE through the
definition of dedicated primitives, either defined through the C API, or loaded inside modules (for
instance, XCLstd is one such module).

Modules and types

The second way provides new data types, by defining types as compound of existing types (making
complex types usng lists is relatively easy), and utility primitives to handle them, that can be seen as
constructor and methods.
We will see on an example that while this is relatively easy, these constructs are not always needed,
and in any case rely heavily on the construction of new primitives. Thus you should be familiar with
primitives coding before attempting to enact this part of the tutorial.

Writing primitives

Defining a primitive is essentially providing ways for your code to interact with the execution code of
XCLE. That means how to pass arguments, how to return results, where are stored parameters, and
identifiying the primitive.
The data needed by XCLE for this purpose is stored in the XCLE_CodeDef structure that you will learn
to build step by step:

struct S_XCLE_CodeDef {
char name[CDEF_NAME_LEN+1] ; // Primitive name
unsigned char argc ; // Number of arguments
XCLE_Type argt[CDEF_ARGS_LEN] ; // Types of required arguments (OR-ed type magic numbers)
unsigned char retc ; // Number of results
XCLE_Type rett[CDEF_ARGS_LEN] ; // Types of results
XCLE_CodeOperator func ; // Machine code pointer
char desc[CDEF_DESC_LEN+1] ; // Short description string

} ;

On the contrary, all you need to obtain is provided through the prototype of a C function, called "machine
code", with the XCLE_CodeOperator predefined prototype:

static const XCLE_Exception _MACHINECODE_myprimitive
 (XCLE_ExecCtx ctx, XCLE_Stack stk, XCLE_Hash hsh, XCLE_Object dat)

This function will be specified in the structure above as the func pointer, and will be called each time
XCLE needs to execute this primitive.

Prototypes

The first thing XCLE checks when executing a primitive, before even using the func pointer, is the
prototype, that is, witch arguments are needed for this primitive, and what it will return. These are the
argc/argt fields for the arguments, and the retc/rett fields for the results. argc/retc hold the number of
items taken / returned, while argt/rett hold a mask describing the allowed types. This mask is built by
OR-ing the magic numbers (the constants XCLE_INTG, XCLE_FLTP, ...) of the types that can be taken
/ returned from the stack. The index 0 in these arrays means the first level of the stack.

Primitive data, names and parameters

The name field of this structure is the name under witch the primitive will be displayed (as my_primitive).
The desc field is a static string providing a brief, human-readable, description of the primitive’s usage
and arguments.

Machine code

This is the most important part of the definition: it is where actual action takes places, and where all
non-straightforward checks (that is, other that argument-checking) must be done. It is also where you
must take care of object references.

This machine code function takes several arguments: an execution context, an arguments stack, a
variables hash, and a parameter object. You will need to use these to obtain arguments, returning the
results your code produced, and signal errors.

Getting args

Arguments are already on the stack when the program enters the primitive’s machine code. Thus,
getting primitive arguments is simply a matter of taking objects from the XCLE_Stack argument of the
function, with XCLE_StackPop.

As the object is stored in a variable, and will probably not be used anymore after the function exists, it
must be freed (by XCLE_ObjectFree) before returning. Remember taht it can do no harm to free an
object you don’t use anymore in a primitive’s machine code, since this object is either on the stack, and
in this case its reference count is non-null, or really not owned, and therefore can be freed.

Returning results
As for arguments, results are simply put on the stack. Once the result objects are created, use
XCLE_StackPush to put on the first level each result object in order.

The stack methods will take care of reference count for you.

Raising exceptions

The normal way of exiting from a primitive handler is to return the predefined OK exception
XCLE_EXCEPTION_OK. Any other exception returned is considered an error code, and will halt
execution of the program that contains this primitive.

In case of an error, use XCLE_ExceptionNew to create a new exception, and simply return it to raise
the exception. Remember to free unused object before.

Standard error codes

The first argument to XCLE_ExceptionNew is an error code. A few predefined error codes exist, of the
form ERR_<name>, with the corresponding MSG_<name> predefined error message.

Error name Error number
(#define ERR_<name>)

Error message
(#define MSG_<name>)

OKSTAT 0 (no error)
UNHDLD 1 "Unhandled error"

RUNTIME 2 "Run time error"
MEMORY 3 "Memory error"
SYSTEM 4 "System error"
IOSTREAM 5 "IO error"
TOOFEWARG 6 "Too few arguments"
INVARGTYP 7 "Invalid argument type"
INVARGVAL 8 "Invalid argument value"
UNIMPLEM 9 "Not implemented"
NOSUCHVR 10 "No such variable"
OUTRANGE 11 "Value out of range"
PARSEERR 12 "Parse error"
USERERR 20 "User-defined error"

All values up to ERR_USERERR are reserved. User applications (i.e., your primitives) can define and
use values bigger than ERR_USERERR for their own error system.

Modules

XCLE supports a dynamic primitive definition interface, through the use of precompiled modules. This let
primitives sets to be distributed easily, and be used equally in a variety of interpreters.

Interface

XCL modules are shared objects (shared libraries, .so files on Linux, or .dll files on Windows) that define
several symbols: XCL_Registry_Table, XCL_Registry_Size and XCL_Registry_Vers.

XCL_Registry_Table is a table of XCLE_CodeDef structures, that contains the list of primitives
definitions. Each of these structures holds various information and data on a primitive, as we saw above.

XCL_Registry_Size is an integer holding the number of primitives we define (taht is, the size of
XCL_Registry_Table

XCL_Registry_Vers contains a version identifier, that must match the current version of XCLE used. It
should be built using the XCLE_MAKEVERSIONID macro, with three integer parameters: the major,
minor and release numbers, as in XCLE_MAKEVERSIONID(1,2,0)

Each XCLE_CodeDef structure needs a function pointer, with type XCLE_CodeOperator. These
functions must be defined in the same shared object as the symbols above, to complete the module’s
symbol table and ensure proper loading.

Dependancy control

The XCL_Registry_Vers ensures that a module built for a given version of XCLE will not be loaded by
an incompatible version of the library. The module loader will try to match one or several of the numbers
given to XCLE_MAKEVERSIONID with an internal version identifier, and will fail with a warning when
trying to load incompatible modules.

Implementation guidelines

Memory

While the reference counting system ensures that most of the burdensome memory management is
dealt with by XCLE itself, using the library with C programs does not let us wrap away completely the
problem. However, we tried to ensure that microscopic memory management needs to be done only
when it makes the most sense, and where the scope of data is the easisest to interpret

Thus, the programmer’s part is reduced to freeing unused objects in primitives. Each argument that has
been used and will be discarded, each temporary object not put on the stack, should be freeed (by a call

to XCLE_FreeObject, or its type-specific counterpart) before exiting from the primitive handler.

Symbols

Symbol names (that is, function names) for the primitives machine code sections should be kept as
distinctive of the module as possible (for instance, by prefixing them with the module name), to avoid
symbol conflicts.
The use of global symbols, defined in the interpreter and not in the module, while unavoidable in some
cases, should be kept to a minimum. The standard interpreters cxcl and gxcl define the XCL_parse_ctx
and XCL_exec_ctx symbols (respectively, the parsing context and the execution context used by the
interpreter, that are used by the standard modules in XCLstd.

Prototypes

More precise prototypes means more intensive use of the fast built-in argument checking system, and
more precise results with the profiling tools. So you should to be as precise as possible when defining
argument counts and types.

Example of module definition

Standard headers

These headers regroup the various XCLE components you will need, and define a few macros to ease
primitive coding.

#include <stdlib.h>
#include <unistd.h>
#include <errno.h>

#include <DbgLog.h>

#include <XCLE/Containers.h>

#include <XCLE/Obj_generic.h>
#include <XCLE/Obj_void.h>
#include <XCLE/Obj_intg.h>
#include <XCLE/Obj_fltp.h>
#include <XCLE/Obj_strg.h>
#include <XCLE/Obj_list.h>
#include <XCLE/Obj_code.h>

#include <XCLE/Mod_string.h>
#include <XCLE/Mod_exec.h>
#include <XCLE/Mod_write.h>
#include <XCLE/Mod_parse.h>

#define XCLE_Primitive(name) \
static const XCLE_Exception name(XCLE_ExecCtx ctx, XCLE_Stack stk, XCLE_Hash hsh, XCLE_Object dat)

#define GETSTACK() stk
#define GETNAMES() hsh
#define GETDATA() dat
#define SETSTATUS(e) return e
#define SETSTATUSMSG(m) return XCLE_ExceptionNew(ERR_MAXSYSERR,m)
#define SETSTATUSNUM(e) return XCLE_ExceptionNew(ERR_##e,MSG_##e)
#define STATUSOK() return XCLE_EXCEPTION_OK

Machine code definition

We define here only two primitives: one that adds two numbers, and another that flips the sign of a
number. We distinguish the case where the numbers are integers, and floating-point values.

XCLE_Primitive(_CodeCall_numadd) {
XCLE_Object obj = NULL ;
XCLE_Object obj1 = NULL ;
XCLE_Object obj2 = NULL ;
obj1 = XCLE_StackPop(GETSTACK()) ;
obj2 = XCLE_StackPop(GETSTACK()) ;
switch(XCLE_ObjectType(obj1)) {
case XCLE_OT_INTG:

switch(XCLE_ObjectType(obj2)) {
case XCLE_OT_INTG:

obj = XCLE_AnyToObject(XCLE_IntgNew(XCLE_IntgValue((XCLE_Intg)obj1) +
XCLE_IntgValue((XCLE_Intg)obj2))) ;

break ;
case XCLE_OT_FLTP:

obj = XCLE_AnyToObject(XCLE_FltpNew(XCLE_IntgValue((XCLE_Intg)obj1) +
XCLE_FltpValue((XCLE_Fltp)obj2))) ;
break ;

}
break ;

case XCLE_OT_FLTP:
switch(XCLE_ObjectType(obj2)) {
case XCLE_OT_INTG:

obj = XCLE_AnyToObject(XCLE_FltpNew(XCLE_FltpValue((XCLE_Fltp)obj1) +
XCLE_IntgValue((XCLE_Intg)obj2))) ;
break ;

case XCLE_OT_FLTP:
obj = XCLE_AnyToObject(XCLE_FltpNew(XCLE_FltpValue((XCLE_Fltp)obj1) +
XCLE_FltpValue((XCLE_Fltp)obj2))) ;
break ;

}
break ;

}
XCLE_ObjectFree(obj1) ;
XCLE_ObjectFree(obj2) ;
if(obj==NULL) { SETSTATUSNUM(RUNTIME) ; /* return ; */ }
if(XCLE_StackPush(GETSTACK(),obj)==-1) { SETSTATUSNUM(RUNTIME) ; /* return ; */ }
STATUSOK() ;
/* return ; */

}

XCLE_Primitive(_CodeCall_numneg) {
XCLE_Object obj = NULL ;
XCLE_Object obj1 = NULL ;
obj1 = XCLE_StackPop(GETSTACK()) ;
switch(XCLE_ObjectType(obj1)) {
case XCLE_OT_INTG:

obj = XCLE_AnyToObject(XCLE_IntgNew(- XCLE_IntgValue((XCLE_Intg)obj1))) ;
break ;

case XCLE_OT_FLTP:
obj = XCLE_AnyToObject(XCLE_FltpNew(- XCLE_FltpValue((XCLE_Fltp)obj1))) ;
break ;

}
XCLE_ObjectFree(obj1) ;
if(obj==NULL) { SETSTATUSNUM(RUNTIME) ; /* return ; */ }
if(XCLE_StackPush(GETSTACK(),obj)==-1) { SETSTATUSNUM(RUNTIME) ; /* return ; */ }
STATUSOK() ;
/* return ; */

}

Primitives definitions structures

We now need to implement the XCL module interface, taht is, to fill the required symbols with
appropriate values. We begin by setting the version control identifier with the version number of the
XCLE library we use for the build.

const unsigned long XCL_Registry_Vers = XCLE_MAKEVERSIONID(1,2,0) ;

We set XCL_Registry_Size with the number of defined primitives:

const unsigned long XCL_Registry_Size = 2 ;

And finally we fill the registry with the primitive definition data, specifying the primitives’ arity, expected
arguments, name...

XCLE_CodeDef XCL_Registry_Table[2] = {
{

"+", // Name of the primitive
2, { XCLE_OT_INTG|XCLE_OT_FLTP, XCLE_OT_INTG|XCLE_OT_FLTP }, // Number, and types, of needed
arguments
1, { XCLE_OT_INTG|XCLE_OT_FLTP }, // Number, and types, of result(s)
(const XCLE_CodeOperator) _CodeCall_numadd, // Machine code pointer
"Numeric addition" // Short description

} ,
{

"-", // Name of the primitive
1, { XCLE_OT_INTG|XCLE_OT_FLTP }, // Number, and types, of needed arguments
1, { XCLE_OT_INTG|XCLE_OT_FLTP }, // Number, and types, of result(s)
(const XCLE_CodeOperator) _CodeCall_numneg, // Machine code pointer
"Numeric sign inversion" // Short description

} ,

} ;

Compiling

Once you have created, as above, your primitive definition file, you need to compile it to build a shared
library. On Unices, assuming you have called that file my_primitives.c, this is easily done with:

$[shell]> cc -c my_primitives.c -o my_primitives.o
$[shell]> ld -shared -soname my_primitives.so my_primitives.o -o my_primitives.so

Custom data types

The <TYPE:data> construct

Defining the type handler

Commented examples

Getting arguments: <print>

Returning results and types: <inc>

Managing execution, exceptions: <loop>

The Matrix type

The <Matrix> built-in: type-name, and type checker
Handlers: overloading the <+>, <*>, </>, <^> operators

