
eXtensible Concatenative Language Engine

Overview

XCLE provides a framework for software-based handling of executable code, combining easy
generation and manipulation, with execution speed and memory efficiency at runtime. XCLE implements
most of the basic data types: integers, floats, strings, recursive lists and executable primitives,
encapsulated in a generic object type. The API provides the means to integrate program building
capabilities into software, handling both the data and code aspects of program generation and
execution. The library as a whole provides the necessary framework for manipulating concatenative
code.

The object hierarchy tree is described below, showing object name, data, category (between brackets),
and string representation (between quotes).

XCLE_Object Generic object [none] ---
XCLE_Void Undefined object [null] ’¬’

XCLE_Intg Integer number on 32
bits [scal] ’123456’

XCLE_Fltp Floating point number [scal] ’3.1415926e+00’
XCLE_Strg Character string [scal] ’"any text"’
XCLE_List All-purposes list [list] ’[obj1 obj2 ...]’

XCLE_Code Dynamic executable
code [exec] ’<CODE_NAME>’ or

’<CODE_NAME:data>’

Note 1: objects in an XCLE_List can be separated by spaces, tabs, or linefeeds / carry returns

Note 2: here is a table of numeric values for special characters:
CHR DEC HEX CHR DEC HEX
" 034 0x22 : 058 0x3A
< 060 0x3C > 062 0x3E
[091 0x5B] 093 0x5D
¬ 172 0xAC

Programming Interface

Execution
XCLE_ListEval or XCLE_ObjectEval respectively take an XCLE_List or an XCLE_Object in
addition to an XCLE_Stack and XCLE_Hash, on which they will execute the XCLE_List or
XCLE_Object.

The XCLE_List type can contain any particular XCLE_Object. It also provides a mecanism to
build a program, since when a List gets executed, all its elements are executed in turn.
All XCLE_Code executable instructions, as well as the execution of an XCLE_List, use an
XCLE_Stack and an XCLE_Hash. They take arguments and return results on the XCLE_Stack,
while having access to named variables in the XCLE_Hash. Execution of an XCLE_List is the
act to take every member of this list and deposit it on the stack if it is an XCLE_Void, XCLE_Intg,
XCLE_Strg, or XCLE_List, or execute it if it is an XCLE_Code.
Execution stops when the end of the list is reached, or the execution of an [exec] type failed, from
lack of arguments, bad argument types, or some other error.

These execution routines return an exception (an XCLE_Exception structure), equal to
XCLE_EXCEPTION_OK when the execution went well, or the raised exception in case of error.
The full exception stack can be found in the execution context structure.

Compiler
XCLE_ListParse or XCLE_ObjectParse respectively take a character string and produce an
XCLE_List or an XCLE_Object. The string is interpreted into objects so that printing these
objects would produce back the original string, or something very similar.

Syntax
A valid string for XCLE_ListParse is one or more string representation of objects, among:

Instructions: e.g. ’ <HELP> ’, the code base building blocks
Numbers: e.g. ’ 3.1425e+00 ’, an integer or floating point number
Strings: e.g. ’ "HELLO" ’, a litteral string
Lists: e.g. ’ [obj1 obj2] ’, a list of other objects

During parsing, a bareword is looked-up as a number, then if not applicable in the set of available
instructions, and finally parsed as a string if it could not be found.

Data
The memory representation of an XCLE_Object has two parts: a generic memory and tracking
structure, used for reference counting and cross-referencing, and a content part, type-dependant.

The XCLE_Void data type is the default type: it is only used to mark internal XCLE_Object use,
or in a standard context that something has gone wrong in memory management.
The three scalar data types are simple counted memory segments: fixed size for the XCLE_Intg
and XCLE_Fltp types, variable size (which means keeping a ’size’ register) for the XCLE_Strg
type.

The List type is a variable-length vector, with buffer space before and after the section holding (in
a consecutive manner) the XCLE_Object’s. The buffer spaces enables fast insertion and deletion
with the pop/push and shift/unshift operations.

As for the XCLE_Code (executable) type, this is a complex structure, containing, among other
things, a pointer toward a segment of assembler code retaining the actual implementation, input
and output arity and type information, and a formatted description.
The "system" types (XCLE_Stack and XCLE_Hash, or named variables table) play an essential
role in memory management: objects can be freed when no reference for them in one of these
tables exist any more. They also are the essential holders for instruction arguments and results.

DOWNLOAD

The latest version of XCLE can be obtained from
http://www.varkhan.net/software/xcl/XCLE/

AUTHOR

Name: Yann LANDRIN-SCHWEITZER aka Varkhan
Mail: varkhan at varkhan dot net
Home: http://www.varkhan.net/

BUGS

Innumerable. Don’t forget to report them, even if each bug correction is the source for new ones...

TODO

Implement pseudo-code (list-compiled code) file dumping, in a cross-platform format.

SEE ALSO

XCLstd: a library defining a standard instruction set.

xcl:compiler/interpreter for the XCLE library.

gxcl: a Gtk interface for interactively executing XCLE code and manipulating stack and variable lists.

LICENSE

This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this library; if
not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA

